It’s been a challenging time for businesses generally, and particularly in the United Kingdom, with Brexit in many cases adding cost and time to trading, and Covid-19 restricting travel and networking.
So it seemed an appropriate time to launch a new varient of the Yellows Best Limited website, now additionally utilising “.co.uk” as a signifier of commitment to our home market location.
Keeping Customers Operational
The new YellowsBest.co.uk promotes the same blend of Services and Solutions for “Keeping Customers Operational”, but presented in a different and modern single-page layout, making it particularly mobile device-friendly where ‘vertical scrolling’ is more appealing than using the traditional ‘horizontal tabbed’ layout.
We hope this provides Customers old and new with a welcome alternative, though the original YellowsBest.com will continue to be maintained, along with it’s associated blog for ‘informal’ views and news updates.
Assisting with your requirements
It would be interesting to receive feedback as to how useful you may find this additional site, and whether there is anything else you’d like to see featured.
Of course, @YellowsBestLtd online content ultimately serves the purpose of highlighting the types of services and solutions we can provide. Customers may therefore be prompted to get in touch to discuss their specific requirements, which we can usually assist with.
With the combination of moving to a more sustainable future along with a fitness drive encouraging people to be more active, one thing growing in popularity is the “eBike”, which supplements the efforts of the rider with a low speed assistance from an electric motor.
This means you don’t need to be young or super-fit to enjoy getting out and about, with good speeds and longer distances very achievable. And if you want a challenge, you can always switch the assistance off!
Ebikes come ready built to ride away, but an existing machine can be converted.
The three-wheeler challenge
Given the benefits to two-wheeled cycling from going electric, a similar upgrade to an existing 3-wheeled recumbent trike was called for.
In principle, this is ‘simply’ a matter of adding an electric motor and a battery, which is indeed what was done, but there were a few challenges along the way.
Step 1: choosing the electric motor location
The first major decision to make when converting or purchasing any electric cycle is the location of the motor; there are three options: front-wheel, rear-wheel or bottom-bracket mount. For the Trike, with its two small forward wheels, front mounting is not possible. The rear option would require the replacement of the wheel with one with a hub motor, and anyway this can be considered an inferior location given that the motor drive is separate from the rider’s push of the pedals.
Consequently, a bottom-bracket motor was selected, which confusingly on a recumbent trike is not a ‘centre mount’ because it is located at the front, ahead of the front wheel.
Step 2: Motor selection
There are now an expanding number of manufacturers of electric cycle motors, but some of these are only built into new bicycles, and others are prohibitively expensive kits. However, some very affordable Chinese products are available via AliExpress. The selection of the Tongsheng 36V 250W Tsdz2 model from pswpower was made.
Given the restriction in the UK of a maximum speed of 15.5 mph for powered assistance and limit of 250W, this unit is perfectly adequate for the intended task.
Step 3: Bottom Bracket ‘special’ fit
The ‘Bottom Bracket’ is the place on all cycles which enables the pedals to rotate, with bearings facilitating the movements of cranks. However, there are many ‘standards’ of different manufacturers models, so getting a motor to fit in place is not necessarily straight-forward. The existing Trike had what is known as an Ashtabula or ‘American’ one-piece crank’ (OPC) Bottom Bracket, whereby the cranks for the pedals on each side are formed from a single unit and uses a 51.3mm bearing cup pressed into the frame.
Unscrewing the crank retaining nut was aided by use of a Park Tool HCW-18 spanner. One of the pedals was taken off, the bearings teased out, and the crank fed out. Then a brass drift punch bar helped to hammer out the mounting cups from each side.
The difficultly then came that the mounting shaft of the Tsdz2 motor is smaller than the bottom bracket diameter, and is also offset. Fortunately, there is a perfect conversion solution to this problem already available, called the Eccentric BB adapter. This converts the Ashtabula empty shell to standard BSA size 34mm diameter (68mm width), but also is asymmetrical mounting which perfectly accommodates the offset motor shaft. This though is somewhat tricky to source; eventually located at Luna Cycle in CA, USA.
Fitting the adapter required careful insertion either side, being a close fit and needing gentle assistance with a mallet, also ensuring that the rotation of two halves lined up.
But once fitted, the motor was slid in and the offset mounting ensured that the shaft located without difficulty or fouling of the frame. The retaining bracket was fitted to the motor and secured with two M5x16 bolts, and then the M33 retaining nut was screwed into place and tightened using the special ring spanner tool supplied with the motor.
The fixing block was then attached with an M8x40 bolt, and the motor assembly secured in place using the bridge-plate, needed to prevent the possibility of the motor rotating in the crank when being powered in operation.
Step 3: Cranks and pedals
The cranks then fitted to the motor spindles either side. The supplied 170mm long parts were too long for the recumbent machine, being designed for a standard bicycle, and hence a pair of 152mm cranks were sourced, which matched the length of the original ones, which being an all-in-one unit couldn’t be reused. Neither could the pedals, which were a different screw size, and so standard gauge replacements were fitted.
These feature a reverse thread for the left-hand side, which therefore was secured by anti-clockwise rotation, whilst the right hand naturally secures clockwise.
Step 4: Battery fitment
Next came the addition of the 36V 13Ah Lithium-Ion power source. There are various types that can be used on standard bicycles, including down-tube or top-tube units, and bottle-type, but the recumbent trike doesn’t have space for any of these. Instead, it was necessary to add a rear carrier, mounting over the rear wheel, to house a rack mounting battery purchased through eBay from 167-tradeworld-uk. This wasn’t a completely straight-forward fit, as first the rear axle position had to be slightly centralised to accommodate the brackets, and then 16mm pipe clips were needed be added to the frame behind the seat for attaching the front stays to secure the rack. This ensured that the rack didn’t slide or rotate forwards or backwards in use with the weight of the battery.
With the rack secured, the purpose-built battery housing was screwed in place on the lower row of the carrier. Then the battery was slid into place and secured with its key lock. Charging of the battery can be made in situ, though it can also be removed for this purpose. This was fully charged using the dedicated mains / 36V power supply adapter.
Step 5: Display mounting
An important part of the electric conversion system is the incorporation of a display, which connects the power and controls the cycling assistance, whilst also providing useful data such as speed, distance and charge remaining.
For this project, a VLCD5 display was chosen, ideal for the purpose. Due the limited room and mounting options, given that there are no high up handlebars or top tube on the recumbent trike, the display was mounted centrally on the low steering crossbar. This was secured via the two horizontal attachment loops, thus in use being positioned between the rider’s legs.
The optional remote button control was additionally located on the left handle grip, though this was subsequently found to be of no practical use in operation.
Step 6: Wiring up
With all the main components in place, all that was left was to make the various wiring connections, starting with linking the battery to the motor. The battery came with an XT-60 socket, whereas the motor has 4mm bullet connectors. Also, due to the forward mounting location of the motor, a cable of approximately 1m was needed to link the parts, converting the connection types in the process.
Next, the speed sensor was fitted to the left-hand rear wheel stay and accompanying magnet to the spokes, by means of cable ties. This is the means by which the control unit calculates and therefore displays the speed and distance travelled.
The attached cable contains a splitter which is used to connect to both the display unit and also optional front and rear lights. Chosen for this purpose was an AXA Echo 15 switch for the front, and a Lynx rack mounting e-bike red LED for the rear, both of which fortunately accepted the 2.8mm mini spade connectors on the wiring harness.
This combination cable was again too short to link the display with the sensor, so an additional 1m speed sensor extension N58B cable was added, this having the required 6-pin male/female connectors to plug into the splitter cable and the corresponding motor connection.
Step 7: Powering up and Configuring
The final step was to switch on the battery using the key and control panel with a press of the power button, and then set about configuring the system parameters.
The wheel size was set to 20 inches, and the distance measurement to miles. The i-button on the display module cycles the modes from ODO (total distance), TRIP, AVG (speed) and TIME. The +/- buttons increase/decrease the selected assistance level from ECO (minimum), TOUR, SPEED to TURBO (maximum).
The front and rear lights can be switched on and off with a short press of the power button. The rear battery light can be additionally manually switched on.
A long press of the power button switches the display off.
Finishing up and testing
To finalise the build, some cable sheaths were added to tidy up the wiring, and cable ties secured all the leads. The original flag (useful for visibility for such a low-down vehicle) was cable tied in position against the rear rack.
The eTrike frame was adjusted for the right seating position. Now was time for a test ride!
The completed machine performed perfectly well, providing, as most electric cycles do, assistance from a stationary start up to the legal maximum of 15.5 mph. Pedalling effort is still required by the rider, but the effect is to ‘flatten’ hills (and reducing the need for gear changes), making the experience less strenuous and more enjoyable, maintaining a greater average speed and achieving longer ride distances.
In conclusion, the eTrike conversion was relatively straight-forward, once all the necessary component parts had been identified and sourced. Since recumbent trikes are a somewhat specialised form of cycle, and tend not to be alike, then it is to be expected that a degree of customisation is required to achieve the build of a suitable electric conversion.
Your transformation projects
@YellowsBestLtd assists customers in developing their business and improving and maintaining their infrastructure. Should you have any requirements or plans, please get in touch to discuss how we may be of assistance.
A long time ago, great “Dinosaur beasts” of Mobile Communications were supreme. The beginnings were in the 1970’s with the launch of a Motorola handset weighing 2kg. This was followed by other barely portable products with huge batteries such as the Nokia Talkman. Only for the ‘new adopters’ who had to be in touch all the time.
Then came the ‘Bricks’
From these humble beginnings, soon a range of solid, reliable but ‘bricklike’ big and heavy phones appeared, like the Nokia 2110 and the Motorola Dynatac 8000X, as featured in the 1987 movie “Wall Street”. Designed for upwardly mobile business people.
Diverse expansion
Then came a period of rapid expansion with a diverse range of more affordable products to suit wide consumer tastes. Various forms, colours and accessories became more and more important, with slide phones like the Nokia 8110 as featured in the 1999 film “The Matrix” and flip phones like the Motorola Razr, providing a ‘Star Trek’ appeal.
Feature explosion
An expansion of more and more features to make mobiles do more fuelled the explosion of product ranges. Cameras and music players were added to increase the functionality of these increasingly sophisticated and compact pocket-sized devices, such as the Nokia 6230.
A glance at the 2004 Carphone Warehouse catalogue shows how varied mobiles had become, with the top 10 dominated by Nokia, Sony-Ericsson, Siemens and Motorola as the biggest manufacturers of the time.
‘Tyrannosaurus’ functionality heavyweights
For a while, the king of the land was the bulky, terrifyingly expensive but impressive (for its time) Nokia Communicator, offering phone, text, email and even fax. Opening up to reveal a full QWERTY keyboard, the range started with the 9000 which appeared in the 1997 film “The Saint” and had evolved by 2007 into the even more powerful E90.
Extinction Event: The Death of the incumbents
But then came biggest shock to the world of mobile communications: the launch of the first Apple iPhone on 9th January 2007.
Like a meteorite striking the earth, this shock spelt the end for many mobile types which couldn’t compete with the sudden demand for ‘touch-screen’ devices using apps.
Indeed companies like Nokia, once the biggest of them all, couldn’t adapt and died a death, as well documented in the BBC documentary “The Rise and Fall of Nokia”
Survival of the fittest
The ‘smartphones’ from Apple and later Android-based from the likes of Samsung became an increasing hit, wiping out much diversity and seeing a seismic shift away from many form factors to the now standard “slate” style of device.
Some ‘featurephones’ as they came to be known have lingered on, and in recent years companies like HMD global, who under licence have taken some iconic Nokia designs such as the 3310 and made a successful relaunch. Diversity is now finally creeping back with new variants such as the ‘folding’ Samsung Galaxy Z Fold2.
Your Paradigm shifts
Any memories or stories to tell? @YellowsBestLtd would be keen to hear your thoughts and experiences of sudden technology ‘paradigm shifts’. Let us know if we can be of any assistance with your future solution or services requirements.
Most workplaces have seen some considerable disruption over the last year due to the restrictions necessary to deal with the global Covid-19 virus pandemic. Hopefully things are going to get easier over the coming months. But before we race to ‘get back to normal’ (if that’s indeed possible), let’s consider some unexpected benefits we might want to hang onto.
Work is what you do, not where you do it
Commuting has always been a drag. The time wasted driving, not to mention the cost, in order to reach an office in which documents are written, emails are read and replied to, and phones calls are made. Or instead, various ‘productivity’ applications are used. All of which could be done from home. What is needed is a ‘mind-shift’ to recognise that “I’m off to work” can mean engaging in an activity rather than physically travelling somewhere.
What’s the point of an office?
The broad acceptance that an office is where ‘work happens’ is due to the familiarly of their existence over a number of years. Once upon a time there were good reasons why work had to be so: people needed the facilities they provided, including main-frame computers, desk telephones, fax machines, printers, typing-pools (yes, really – people once didn’t type their own documents!) And memos – remember those ‘internal mail’ envelopes? But now, with laptops and mobile phones and broadband internet, it’s no longer critical to all share the same space.
People ‘like’ keeping in touch
The reality of the office is that it’s no longer a critically functional resource hub, but there are some social benefits over working remotely. It’s a place to meet and greet, share ideas and stories, help each other and generally contribute to high morale. People enjoy discussing last night’s TV or the football. Lasting bonds and relationships are formed, sometimes even being introduced to future partners. Not sure all employers would see this to be their ‘role’; the social side can of course be achieved in other ways. Anyway, flexible remote working offers the opportunity for better work-life balance.
Meanwhile, bosses like collecting their workers in one place as then it’s easier to ‘manage by walking about’. There’s a trust element: how can the staff be really hard at work if they’re not visible, aka ‘chained to the desk’. But following McGregors’s ‘Theory X (authoritarian) and Theory Y’ (participative) style of management, you either micromanage them because they’re not motivated, or trust people to take pride in their work and get the job done. So forcing people into an office isn’t the answer to productivity. Rather, pick the right people, train and support them, give them ownership of their tasks. Let them work where and when they need to. Use performance reviews as a tool (not a chore) to keep on track and set rewarding goals.
Quantity or Quality
The crazy thing about the 9-5 office culture is people vary between not having enough time to get a job done, and piloting a desk ‘looking busy’, because they’re supposed to be ‘in’. Flexible working on the other hand recognises that people have lives with things that need scheduling from time to time, around varying business demands and commitments. Allowing people the discretion to manage their work-life balance means better motivated and focussed staff who will put the extra effort in when needed. Or else, managers need to take strong decisions on appropriate resources and team composition. Working ‘smarter not harder’ certainly doesn’t mean forcing everyone into an office and making them work all hours.
Meetings expand to fill the time available
It seems like ‘work’ to spend hours in meetings showing each other an endless supply of presentation slides. Discussions often arise involving only a few participants while others wait passively. The reality is very little is accomplished that couldn’t have been better reviewed remotely, in one-to-one conversations or communicated more broadly via team or company-wide bulletins.
Keep your germs to yourself!
Due to the emphasis on ‘attendance’ (perhaps ingrained in people from their school years), there’s often a culture of ‘bravely struggling in’ when ill with a cold, thus almost guaranteeing the sharing amongst all colleagues. Above all else, the pandemic has shown the sense in keeping people separated to reduce the spread of illness.
Better for you, better for the environment
Not everyone can work from home, and certain tasks can’t be done remotely. But it’s time for a re-evaluation of what journeys are ‘necessary’ and what are the most productive work patterns, both in terms of getting the job done (without sitting in traffic jams for hours) and maintaining a flexible, motivated workforce. Not least because of the unsustainable effect on our planet’s finite resources and impact of climate change due to limitless business activities and excessive travel.
Are you ready for the ‘paradigm shift’?
@YellowsBestLtd we’d be interested to hear your thoughts and feelings about the changes brought about by Covid-19, and how you see habits changing for the future. Will you be rushing back to the office, or reaping new flexibility from remote working? Please get in touch, and let us know how we can help with your continuing business requirements. We look forward to hearing from you.
For many years, the ‘Dynanet’ family of PDH Transmission telecoms products have well served Public Operator and Private Network Customers across the Telecoms, Utilities, Transport and Public Safety markets with high availability mission critical infrastructure, and indeed some networks are continuing to provide good operational service.
They were first introduced by Nokia over 20 years ago, and were continued in recent years by DNWP. Production of the majority of the product range was ceased in 2019.
Spare parts for continued operational service
@YellowsBestLtd satisfies world-wide customer product sourcing requirements for current and ‘legacy’ equipment technologies from a wide range of Original Equipment Manufacturers (O.E.M.s).
For the ‘Dynanet’ range, we have recently obtained of a number of additional refurbished and surplus equipment items. Hence, for those customers continuing to maintain their networks, there now exists the opportunity to increase stocks of spare parts to take advantage of the current availability.
Stocklist of items for immediate supply
Here is a list of the main items currently in stock, though there may be a few additional parts that can be supplied. Hence, please check and if you do have any requirements, please let us know. We look forward to hearing from you.
Part Number
Description
CC 24002
DB2 2×2 Mb/s Branching Unit (B2), 75ohm
Part Number
Description
CC 24011
DB2 2 Mb/s Switching Unit (X2), 75ohm
Part Number
Description
CC 24101
DN2 2×2 Mb/s Interface Unit (IU2), 75ohm
Part Number
Description
CC 24111
DN2 Control Unit (CU), 75 ohm
CG 24170
DN2 Bus Power Unit (BPU)
CG 24171
DN2 Extended Bus Power Unit (EBPU)
CU 24013
Data Interface Unit (DIU) 2M, nx64k: G.703/704, 75ohm
Part Number
Description
D-21470
Euro Connector, 3×7
Part Number
Description
D-24204
Optical Teleprotection Interface Unit, C37.94
Part Number
Description
T31094.01
DCN Adapter C4.0
Part Number
Description
T37870.01
NDM 19in 17-slot Subrack
Part Number
Description
T37871.01
NDM DN2 19in 17-Slot Subrack
T37882.02
NDM DC Unit (NDUe)
Part Number
Description
T37885.01
NDM Ring Generator
Part Number
Description
T37885.02
NDM Ring Generator + DC/DC converter
Part Number
Description
T37889.01
NDM Backup Unit (NBU)
Part Number
Description
T65580.01
ACL2i PF GEN Line Terminal Card
Part Number
Description
TA 21513
Optical Line Terminal Repeater (DF2-8), 1300 nm LED MM/SM
TA 21516
Optical Line Terminal Repeater (DF2-8), 1300 nm LASER SM
TA 21518
Optical Line Terminal Repeater (DF2-8), 1300 nm LASER LP
Part Number
Description
TC 21101
DM2 Multiplexing Unit, 75ohm
Part Number
Description
TC 21301
DM8 Multiplex Equipment, 75ohm
TC 21705
Supervisory Substation
TC 21710.01
TMS Adapter
TU 21122.5
Data Interface Unit (DIU) 48..64k, V.11, 10ch
TU 21124
Data Interface Unit (DIU) nx64k, V.11/V.35/X.21, 2ch
TU 21124.05
Data Interface Unit (DIU) nx64k, V.11/V.35/X.21, sync
It has been an unexpectedly challenging year, unprecedented times indeed!
Unfortunately, it seems likely that we will face more difficulties ahead. The global pandemic still needs to be beaten, and the U.K. leaving the EU will result in unpredictable trading conditions.
Having just celebrated our fifth anniversary, YellowsBest looks forward to continue working with our partners and assisting Customers’ businesses through the uncertain times ahead.
We wish you all the best for a safe, seasonal celebration.
Our aim continues to be “Keeping Customers Operational”; understanding requirements and fulfilling them by providing a range of management services and solutions, including:
consultancy, for business development, sales and marketing
technical support, onsite engineering or 24/7 NOC remote assistance
systems supply, including legacy IT servers / workstations
spares for infrastructure, such as telecoms and CCTV cameras
repairs at module and component level, e.g. LED displayboards, PSUs
value recovery through reverse logistics, resale and recycling
As we continue to move forward, we’d very much like to understand what other services and solutions we can provide to our existing Customers, as well as what would be of interest to potential clients. We’re always keen to enhance our range of #business services, increase the #enterprise infrastructure we support and expand our mix of #sustainable solutions we offer for supply and maintenance of new and legacy #technologies and products.
Please get in touch to discuss your challenges; whether you’re implementing new systems or maintaining existing infrastructure to serve your operational business needs. We look forward to hearing from you.
Equipment repair decisions – the Customer’s right!
Customers with critical infrastructure networks have elements that fail from time-to-time. These can usually be swapped out with items from a spare parts stock, to return the system to operational service with the minimum of disruption to overall system availability.
The question then arises of whether the failed item can be repaired. In most circumstances, it is possible to restore parts to working condition, but sometimes they are classified as ‘Beyond Economic Repair’ (B.E.R.). This can be a somewhat contentious issue.
In theory, the term should be only applied to items where the repair cost would exceed the price of the purchase of a new or refurbished replacement. However, on the one hand the term can be used to label something that physically cannot be restored e.g. due to fire or water damage. On the other, it’s often applied to items where no repair facilities exist or it’s not possible to easily source the required components to complete the remedial work. So in other words, the term is used instead of the negative-sounding ‘repair not possible’.
The reason why this can become a source of frustration is because some customers rightly insist that they should be the “one who decides” if the item is ‘B.E.R.’. Maybe for reliability statistical reasons or version compatibility, it is sometimes desired to retain the original part even if repair costs are high. Sometimes, legacy replacement spare parts are in very short supply, and so it makes sense to retain and refurbish items rather than scraping and losing them forever. Even if the short-term associated costs are greater, for products that are no longer being manufactured, the available ‘spares pool’ is finite and diminishing over time and so the decision to repair may avoid longer-term supply issues in the future.
Reduce – Reuse – Recycle
Most customers have implemented their private network infrastructure systems over a number of years, and for many their operational requirements have not changed. Consequently, it makes more sense both financially and environmentally to maintain these systems rather than embark on complete change-outs.
@YellowsBestLtd helps Customers with their operational needs, and one aspect is to #Reduce the demand for avoidable whole-scale replacements through a combination of #Reuse of refurbished spares and repair of system elements. When removal and disposal of no-longer serviceable infrastructure parts is necessary, we can also assist with the resale and #Recycle for ‘value recovery’ of valuable materials.
We can assist by supplying critical and hard-to-find spare parts and hardware repair services, even when the systems have been declared ‘obsolete’ (i.e. no longer in production) by the O.E.M. And we will endeavour to ensure that repair options are always available and the question of B.E.R. is up to the Customer to decide. Please let us know how we can help; we look forward to hearing from you.
From time-to-time, hardware elements within infrastructure systems fail, and repair services are required for a diverse range of parts procured over a considerable period of time, from a multitude of Original Equipment Manufacturers (O.E.M.s), some of which no longer exist.
YellowsBest is able to provide a comprehensive repairs management service for both new and old equipment items, all to a standard equivalent to the original working condition and with warranted operation.
Component Level Repairs Example: SES Displayboards
An example of the type of equipment that we are often asked to assist with is the MS1 Matrix LED ‘displayboards’ produced by SES and used for professional signage applications.
Typical issues to deal with are Faulty LEDs, damaged capacitors and broken sockets, which have occurred in operational use over time. Adding to this are problems stemming from heat gun damage and resoldering caused by previous ‘user fixes’. But these issues are addressable and the boards restored to full working condition.
Other types of equipment for repair services include Telecommunications products, power supplies and CCTV cameras.
Reduce – Reuse – Recycle
@YellowsBestLtd helps Customers with their operational needs, and one aspect is to #Reduce the demand for avoidable whole-scale replacements through a combination of #Reuse of refurbished spares and repair of system elements. When removal and disposal of no-longer serviceable infrastructure parts is necessary, we can also assist with the resale and #Recycle for ‘value recovery’ of valuable materials.
Most customers have implemented their private network infrastructure systems over a number of years, and for many their operational requirements have not changed. Consequently, it makes more sense both financially and environmentally to maintain these systems rather than embark on complete change-outs. We can assist by supplying critical and hard-to-find spare parts and hardware repair services, even when the systems have been declared ‘obsolete’ (i.e. no longer in production) by the O.E.M. We look forward to hearing from you.
Continued Supply of Spare Parts – Surplus and Refurbished Items
@YellowsBestLtd satisfies customer product sourcing requirements for current and ‘legacy’ equipment technologies.
Despite the recent ‘rampdown’ announcement by DNWP for the ‘Dynanet’ range, we should be able to continue to supply refurbished and surplus equipment for as long as required, but the likely effect of the discontinuation of production will be to squeeze the availability of remaining stocks, with a consequential impact on pricing.
Hence, it is recommended that if there is anything that might be needed, it would be best to consider purchasing it in good time to ensure availability of items and best prices.
Here is a list of the main items immediately available from current stocks, though there may be a few additional parts that can be supplied. Hence, please check and if you do have any requirements, please let us know. We look forward to hearing from you.
Part Number
Description
24204
TPSO H/W Module
CC 24002
DB2 Branching Unit, B2 2×2 Mb/s 75 ohm
CC 24011
DB2 2 Mb/s Switching Unit, X2 75 ohm
CC 24101
DN2 Interface Unit (IU2) 2×2 Mb/s 75 ohm
CC 24111
DN2 Control Unit (CU) 75 ohm
CF 24186
DN2 19″ Subrack
CF 24186.09
DN2 Subrack 19″, grey-L91 EMC
CG 24170
DN2 Bus Power Unit (BPU)
CG 24171
Extended DN2 Bus Power Unit (EBPU)
CU 24013
Data Interface Unit (DIU) 2M, nx64k: G.703/704, 75 ohm
T30506.09
17-slot DYNANET Subrack
T30851.02
Subrack Power Adapter (SPA)
T37870.01
NDM ACM2 19in 17-slot subrack
T37871.01
NDM DN2 19″ 17-Slot Subrack
T37882.01
NDM DC Unit (NDUe)
T37882.02
NDM DC Unit (NDUe)
T37885.01
NDM Ring Generator
Part Number
Description
T37889.01
NDM Backup Unit (NBU)
Part Number
Description
T65520.01
ACL2 RM DC Power Gen
T65580.01
ACL2i PF GEN Line Terminal Card
Part Number
Description
TA 21513
Optical Line Terminal Repeater 2-8 M, 1300 nm LED MM/SM
TA 21516
Optical Line Terminal Repeater 2-8 M, 1300 nm LASER SM
TC 21101
DM34 Mux Card
TC 21301
DM8 Multiplex Equipment, 75 ohm
TC 21705
Supervisory Substation
TC 21710.01
TMS Adapter
TG 21261
Ring Generator 25HZ 15W
TU 21122.5
Data Interface Unit (DIU) 48..64k V.11 10ch
TU 21124
Data Interface Unit (DIU) NX64k V.11/V.35/X.21 2CH